ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Tianyu Liu, Noah Wolfe, Christopher D. Carothers, Wei Ji, X. George Xu
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 232-242
Technical Note | doi.org/10.13182/NSE16-33
Articles are hosted by Taylor and Francis Online.
XSBench is a proxy application used to study the performance of nuclear macroscopic cross-section data construction, which is usually the most time-consuming process in Monte Carlo neutron transport simulations. In this technical note we report on our experience in optimizing XSBench to Intel multicore central processing units (CPUs), many integrated core coprocessors (MICs), and Nvidia graphics processing units (GPUs). The continuous-energy cross-section construction in the Monte Carlo simulation of the Hoogenboom-Martin large problem is used in our benchmark. We demonstrate that through several tuning techniques, particularly data prefetch, the performance of XSBench on each platform can be desirably improved compared to the original implementation on the same platform. It is shown that the performance gain is 1.46× on the Westmere CPU, 1.51× on the Haswell CPU, 2.25× on the Knights Corner (KNC) MIC, and 5.98× on the Kepler GPU. The comparison across different platforms shows that when using the high-end Haswell CPU as the baseline, the KNC MIC is 1.63× faster while the high-end Kepler GPU is 2.20× faster.