ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
David L. Aumiller, Jeffrey W. Lane
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 463-471
Technical Paper | doi.org/10.13182/NSE16-12
Articles are hosted by Taylor and Francis Online.
COBRA-IE is a three-field subchannel analysis code that was originally based on the COBRA-TF code series. The default interfacial drag model in COBRA-IE has been assessed against a wide range of pressure drop data taken in confined geometries and has been shown to perform very well. The difference in interfacial drag behavior for confined flow paths compared to large open regions where the bubbles are not constrained by the physical geometry of the flow path has been well documented in the open literature. Therefore, a dedicated interfacial drag model for large, open regions has been developed and implemented in COBRA-IE. This alternative interfacial drag model is based on the drift flux formulation and is activated by user input. A combination of the Kataoka-Ishii and the Zuber-Findley drift flux correlations has been implemented in COBRA-IE to calculate the weighted mean drift velocity and distribution parameter. The implementation of the model is described in this paper, and the interface functions to transition between the drift flux and two-fluid formulations are emphasized.
An assessment of the predictive capability of COBRA-IE for the transient level swell phenomena for the experiments performed by General Electric (GE) has been performed. Level swell is an important phenomenon for reactor safety analysis because it impacts water distribution within the reactor vessel during the blowdown phase of the transient as well as the residual inventory available to provide core cooling. The initial assessment of the code using the default interfacial drag modeling package showed an overprediction of the level swell and liquid carryover for the GE experiments, which is indicative of an overprediction of the interfacial drag for these situations. In addition to using the new code to reexamine the GE level swell experiment, assessments of the new model have been performed using the steady-state void fraction data collected in the Beattie-Sugawara and Smith experiments and are presented in this paper.