ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
David L. Aumiller, Michael J. Meholic
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 453-462
Technical Paper | doi.org/10.13182/NSE16-42
Articles are hosted by Taylor and Francis Online.
COBRA-IE is a three-field subchannel analysis code under development at the Bettis Atomic Power Laboratory. The analysis code is being developed as a general-purpose thermal-hydraulic analysis tool with an emphasis on use in an integrated code system for analyzing postulated large-break loss-of-coolant accidents.
The overall accuracy of programs such as COBRA-IE is tied to the ability to predict void fraction. As such, a comprehensive assessment has been made using one-dimensional void fraction data. The results of this assessment are provided in this paper. The assessment utilizes data from nine different experimental facilities. It includes data from air-water and steam-water facilities, heated flow, adiabatic flow, subcooled boiling, saturated boiling, cocurrent upflow, and cocurrent downflow. Approximately 1100 data points are evaluated and included in this assessment. Overall, COBRA-IE was able to predict the void fraction with an average error (predicted − experimental) of less than 0.04. Plots describing the relationship between the error in the prediction and parameters such as pressure and flow are also provided.