ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
David L. Aumiller, Michael J. Meholic
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 441-452
Technical Paper | doi.org/10.13182/NSE16-41
Articles are hosted by Taylor and Francis Online.
An assessment of the predictive capability of Coolant Boiling in Rod Arrays–Integrated Environment (COBRA-IE) for critical heat flux (CHF) using the 2005 Groeneveld CHF lookup table is presented. The assessment was performed against 13 different open literature CHF experiments that were conducted over a wide range of conditions in various internal flow geometries. Overall, approximately 1300 data points were evaluated.
Different methodologies to quantify the uncertainty inherent in the CHF models are discussed in this paper. The simulation techniques, uncertainty methods, and results of two of the methods are provided. A discussion of the appropriate use of the CHF uncertainty methods is included. The results indicate that for the method associated with the largest uncertainty, the average measured/predicted value in CHF is 1.19, and the standard deviation is 0.62. For the second method, similar to the critical power ratio used for boiling water reactors, the average ratio is 0.98, and the standard deviation is 0.13. Finally, a method to translate between the methods is proposed and shown to be accurate. The use of this transformation could permit significant time and cost savings by allowing a single uncertainty assessment to serve two very different analytical needs.