ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Avinash Vaidheeswaran, William D. Fullmer, Martin Lopez de Bertodano
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 353-362
Technical Paper | doi.org/10.13182/NSE16-23
Articles are hosted by Taylor and Francis Online.
It is well-known that an incomplete two-fluid model (TFM) leads to imaginary roots of the characteristic polynomial, thus rendering the model ill-posed. A common approach to fix this problem has been to introduce sufficient numerical/artificial diffusion or nonphysical hyperbolizing terms to stabilize the model. The disadvantage of this approach is that the physical instabilities that can be accurately predicted by the TFM either get severely dampened or disappear entirely. The preferred alternative is to introduce appropriate physics that may stabilize the TFM at short wavelengths while preserving the physical long-wavelength instabilities. For instance, in near-horizontal stratified flows, the appropriate physical mechanism is surface tension. However, it is not apparent what such a mechanism should be in dispersed bubbly flows.
Researchers in the past have demonstrated that the inclusion of the momentum transfer due to interfacial pressure along with virtual mass force makes the model conditionally well-posed up to a gas volume fraction of 26%. However, in practice, one may observe bubbly flows having gas concentrations beyond this theoretical limit. Hence, it is important to make the behavior of the TFM well-posed for the entire range of gas volume fractions that is physically permissible. In this paper, the often-neglected phenomenon of bubble collisions is considered. The colliding bubbles generate a dispersed-phase pressure that is resistive to increased compaction. The inclusion of bubble pressure in the TFM renders the model well-posed up to the maximum packing limit. Furthermore, it is also shown that the collision force is necessary to predict the wave propagation velocities for bubbly flows over the entire range of void fractions observed in reality. Comparisons are made with the data, and a reasonable agreement is seen. Finally, it is demonstrated with computational fluid dynamics calculations that the addition of appropriate physical mechanisms (i.e., interfacial pressure and collision) makes the multidimensional TFM well-posed.