ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Stefan Meyer, Ivan Otic, Xu Cheng
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 377-387
Technical Paper | doi.org/10.13182/NSE16-6
Articles are hosted by Taylor and Francis Online.
In the framework of a description of melt pool heat transfer under severe accident conditions, we introduce a computational fluid dynamics approach for the phase change based on the phase-field method. The approach is derived using the formalism of irreversible thermodynamics and depends on a phenomenological expression for the free energy of binary eutectic alloys. The free energy is constructed to describe sharp interfaces on sufficiently small length scales and is capable of representing the appearance of mushy layers in a volume-averaged large-scale perspective. In particular, a dynamic calculation procedure for the diffuse interface width is introduced based on free energy minimization. Numerical simulations using this approach are performed and compared with experimental and numerical results from the literature. These comparisons demonstrate that the new model improves numerical simulation results and is able to describe the dynamics of sharp and diffuse interfaces.