ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Yousef M. Farawila, Donald R. Todd, Maurice J. Ades, José N. Reyes Jr.
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 321-333
Technical Paper | doi.org/10.13182/NSE16-24
Articles are hosted by Taylor and Francis Online.
Numerical solutions for transient fluid flow in nuclear systems often suffer from the effects of numerical diffusion and damping making the assessment of system stability rather difficult. Efforts for coping with this problem include research and development of algorithms with improved fidelity for stability calculations as they apply to particular problems. Benchmarking exercises in comparison with specially designed experiments are necessary to verify algorithmic fidelity and guide the development and adjustments of the algorithms. In this paper, an analytical approach is introduced where a simple model—an analogue—is constructed such that the basic instability mechanisms are represented in a form that lends itself to analytical solutions that are free from the diffusion and damping problems that plague finite volume algorithms. Direct conclusions can be made regarding the stability of a system in the case where the analogue closely resembles the system under study. However, when the system is too complex for direct assessment, the stability fidelity of numerical solutions can be assessed by comparing the numerical solution for the simple system with the analytical solution and using the comparison to quantify any damping effects and justify the application of the numerical method to the complex representation of the real system under study. The theoretical analysis is supported by reference to recent test data in the NuScale Integral System Test (NIST) facility representing a scaled-down NuScale module.