ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Alexandre Vagtinski de Paula, Luiz Augusto Magalhães Endres, Sergio Viçosa Möller
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 334-345
Technical Paper | doi.org/10.13182/NSE16-30
Articles are hosted by Taylor and Francis Online.
This paper presents a study of the identification of flow patterns inside a tube bank with the technique of symbolic dynamics. The experimental signals of the mean velocity and its fluctuations are measured by hot-wire anemometry in an aerodynamic channel and used as input data for the symbolic dynamics technique. The tube bank consists of 23 circular cylinders in a triangular arrangement. The pitch-to-diameter ratio chosen was 1.26 and the Reynolds numbers are in the range from 7.5 × 103 to 4.4 × 104, computed with the tube diameter, D = 25.1 mm, and the percolation velocity. In this work, a binary alphabet was chosen to convert and analyze the data. The partitioning process is performed through the mean value of the time series and via discrete wavelet reconstruction, according to a chosen reconstruction level. The flow patterns are presented for different positions inside the tube bank, where histograms and probability density functions support the statistical interpretation. The histograms with a decimal representation for the original experimental time series with partitioning performed through the mean value show that the signals do not present fast changes of velocity fluctuations. This behavior was observed in the five rows of cylinders. However, by changing the partitioning according to a wavelet reconstruction of the signal with high frequency, which means that the signals are close to the partitioning function, fast changes appear in all of the time series observed. The results indicate that the turbulence in tube banks has chaotic characteristics. Flow visualizations performed with ink injection inside the tube bank helped in the interpretation of the results.