ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Jarrett, B. Kochunas, A. Zhu, T. Downar
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 208-227
Technical Paper | doi.org/10.13182/NSE16-51
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) method is one of the most widely used methods for accelerating the convergence of numerical transport solutions. However, in some situations, iterative methods using CMFD can become unstable and fail to converge. We present and evaluate three different modifications of the CMFD scheme that provide enhanced stability: multiple transport sweeps, artificial diffusion, and relaxing the flux update. We present the Fourier analysis on each of these schemes for an idealized problem to characterize the stability and rate of convergence for both fixed-source and fission-source problems. Comparisons of the effectiveness of these methods are also performed numerically for a variety of benchmark boiling water reactor and pressurized water reactor problems using the Consortium for Advanced Simulation of Light Water Reactors neutronics code MPACT. We demonstrate a means of stabilizing CMFD by modifying the diffusion coefficient to make the iteration behave more like the partial-current CMFD (pCMFD) method, which is unconditionally stable, and show through a sequence of numerical experiments that the CMFD method performs similarly to the pCMFD method for the selected benchmark problems. We also show, both theoretically and experimentally, that modifying the diffusion coefficient in the CMFD equations is similar to underrelaxing the scalar flux update. The theoretical and experimental results show that many of the known techniques for stabilizing CMFD are fundamentally very closely related.