ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Jean Tommasi, Maxence Maillot, Gérald Rimpault
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 174-189
Technical Paper | doi.org/10.13182/NSE16-4
Articles are hosted by Taylor and Francis Online.
In neutron chain systems with material symmetries, various k-eigenvalues of the neutron balance equation beyond the dominant one may be degenerate. Eigenfunctions can be partitioned into several classes according to their invariance properties with respect to the symmetry operations (mirror symmetries and rotations) keeping the material distribution in the system unchanged. Their calculation can be limited to a fraction of the system (sector) provided that innovative boundary conditions matching the symmetry classes are used, and whole-system eigenfunctions can then be unfolded from the solutions obtained over the sector. With power iteration as the method for searching k-eigenvalues, this use of the material symmetries to split the global problem into a variety of smaller-sized problems has several computational advantages: lower computation times and memory requirements, increased dominance ratios, lowered possible degeneracies in each subproblem, and possible parallel (separated) treatment of the subproblems. The implementation is discussed in a companion paper using diffusion and transport theories.