ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
ANS Congressional Fellowship applications due
Applications for the Society’s Glenn T. Seaborg Congressional Science and Engineering Fellowship will be closing soon. Congressional Fellows can directly contribute to the federal policymaking process, working in either a U.S. senator’s or representative’s personal office or with a congressional committee. They will be responsible for supplying Congress with their expertise in nuclear science and technology, having a hand in the creation of new laws while gaining a deeper understanding of the legislative process.
Kevin John Connolly, Alexander J. Huning, Farzad Rahnema, Srinivas Garimella
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 228-243
Technical Paper | doi.org/10.13182/NSE15-105
Articles are hosted by Taylor and Francis Online.
A newly developed coupled neutronic–thermal-hydraulic method for prismatic high-temperature gas reactors (HTGRs) is presented with accompanying results for several prismatic core configurations and numerical sensitivity studies. The principal advantage of the new method is the determination of coupled, whole-core temperature and pin power distributions with reduced computational effort over other available codes. The coarse-mesh radiation transport method (COMET), which relies solely on radiation transport, is the component of the new method used to compute neutronic parameters. A three-dimensional unit-cell–based thermal fluids solver is used to compute steady-state thermal-hydraulic parameters. For both component methods, no geometric approximations or averaging schemes are necessary. Convergence of the neutronic and thermal-hydraulic components and the coupled method is discussed, and coupled analyses are presented. The calculation of whole-core solutions allows for unique insights not possible with limited domain tools such as computational fluid dynamics. Results from one such unique study, near-critical control rod movements, are presented in this paper. Comparisons between coupled and uncoupled analyses are also presented.