ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Ting Zhu, Alexander Vasiliev, Hakim Ferroukhi, Dimitri Rochman, Andreas Pautz
Nuclear Science and Engineering | Volume 184 | Number 1 | September 2016 | Pages 69-83
Technical Paper | doi.org/10.13182/NSE14-142
Articles are hosted by Taylor and Francis Online.
NUSS-RF is a tool for nuclear data uncertainty propagation through neutronics calculations with continuous-energy Monte Carlo codes and ACE-formatted nuclear data libraries. Many existing codes, including the original version of NUSS (Nuclear data Uncertainty Stochastic Sampling), are based on simple random sampling algorithms. The NUSS-RF extension now uses a frequency-based sampling algorithm, called the random balance design (RBD), to analyze individual nuclear data uncertainty contributions in regard to the total output (e.g., keff) uncertainty. The implementation of the RBD method into NUSS-RF is initially verified by comparing the computed individual input variance contributions with analytical solutions for two analytical test cases. As well, it is assessed against the alternative approach based on the use of correlation coefficients. NUSS-RF is then used for an analysis of the Jezebel and Godiva fast-spectrum criticality benchmarks: in a first step, the overall effect of the 239Pu(n,f) and 235U(n,f) cross-section uncertainties on keff is evaluated, while in a second step, the contributions from the individual energy groups are quantified. As an additional verification, the NUSS-RF results are assessed against sensitivity and uncertainty analysis based on perturbation theory, showing good agreement between the two solutions. Finally, the capability of NUSS-RF is demonstrated for ranking the input parameters with respect to their influence on the total uncertainty of the output parameters, taking into account possible correlations between input parameters. Possible future improvements for the current computational scheme are discussed in the conclusions.