ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
T. Matsumura
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 407-420
Technical Paper | doi.org/10.13182/NSE15-86
Articles are hosted by Taylor and Francis Online.
The neutron escape probability from a rectangular cell is investigated for the collision probability method. Since the numerical calculation of the escape probability requires multiple integrations, resulting in a long computing time, semianalytical approximation of the multiple integrations is proposed to reduce the computing time. By approximating the result of integration in the z-direction by a polynomial expression divided into ranges, it is possible to perform the integrations in the x- and y-directions analytically. The computing time of the present semianalytical approximation is reduced by one to two orders of magnitude compared with that required for the conventional numerical integration. Moreover, a lookup escape probability table for rectangular cells calculated using the semianalytical approximation enables the calculation of the escape probability for an arbitrary rectangle with a much shorter computing time and practical precision (<0.1% error). In addition, a method of applying the semianalytical approximation and a lookup table to the collision probability calculation for an x-y geometry is discussed.