ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
François Bachoc, Karim Ammar, Jean-Marc Martinez
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 387-406
Technical Paper | doi.org/10.13182/NSE15-108
Articles are hosted by Taylor and Francis Online.
It is now common practice in nuclear engineering to base extensive studies on numerical computer models. These studies require running computer codes in potentially thousands of numerical configurations and without expert individual controls on the computational and physical aspects of each simulation. In this paper, we compare different statistical metamodeling techniques and show how metamodels can help improve the global behavior of codes in these extensive studies. We consider the metamodeling of the Germinal thermomechanical code by Kriging, kernel regression, and neural networks. Kriging provides the most accurate predictions, while neural networks yield the fastest metamodel functions. All three metamodels can conveniently detect strong computation failures. However, it is more challenging to detect code instabilities, that is, groups of computations that are all valid but numerically inconsistent with one another. For code instability detection, we find that Kriging provides an interesting tool.