ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Harshavardhan Kadvekar, Sana Khan, Sangeetha Prasanna Ram, Jayalekshmi Nair, S. Ganesan
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 356-370
Technical Paper | doi.org/10.13182/NSE15-103
Articles are hosted by Taylor and Francis Online.
In a majority of the cases, error propagation studies in nuclear science and engineering use the sandwich formula, which is strictly applicable when the probability density function of the random input quantities (e.g., the basic cross-section data) are determined completely by the mean and covariances. The use of the sandwich formula, which is also referred to in the literature as traditional first-order sensitivity analysis or adjoint-based sensitivity and uncertainty analysis, requires the assumption of linearity assumption and relatively small errors. For the first time, this paper examines the application of unscented transformation (UT) technique, which is used in control and reliability engineering, to error propagation in the nuclear field for nonlinear cases. Using different examples, this paper shows that this deterministic method of UT produces better results compared to the conventional sandwich formula for error propagation. An example on error propagation given in the literature is revisited, and a calculation of the efficiency of a gamma-ray detector is also presented for illustrative purposes using the UT method.