ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Harshavardhan Kadvekar, Sana Khan, Sangeetha Prasanna Ram, Jayalekshmi Nair, S. Ganesan
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 356-370
Technical Paper | doi.org/10.13182/NSE15-103
Articles are hosted by Taylor and Francis Online.
In a majority of the cases, error propagation studies in nuclear science and engineering use the sandwich formula, which is strictly applicable when the probability density function of the random input quantities (e.g., the basic cross-section data) are determined completely by the mean and covariances. The use of the sandwich formula, which is also referred to in the literature as traditional first-order sensitivity analysis or adjoint-based sensitivity and uncertainty analysis, requires the assumption of linearity assumption and relatively small errors. For the first time, this paper examines the application of unscented transformation (UT) technique, which is used in control and reliability engineering, to error propagation in the nuclear field for nonlinear cases. Using different examples, this paper shows that this deterministic method of UT produces better results compared to the conventional sandwich formula for error propagation. An example on error propagation given in the literature is revisited, and a calculation of the efficiency of a gamma-ray detector is also presented for illustrative purposes using the UT method.