ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
YuGwon Jo, Bumhee Cho, Nam Zin Cho
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 229-246
Technical Paper | doi.org/10.13182/NSE15-100
Articles are hosted by Taylor and Francis Online.
The continuous-energy Monte Carlo (MC) method is gaining attention not only for nuclear reactor statics but also for transient analysis, as computing power increases with the use of massive parallel computers. This paper presents a practical and accurate MC transient analysis method for heterogeneous, continuous-energy reactor transient problems, based on the predictor-corrector quasi-static (PCQS) method. The transient fixed-source problem of the PCQS method is solved by MC calculation with fission source iteration, where the partial current-based coarse-mesh finite difference (p-CMFD) method is used both to accelerate the convergence of the fission source distributions and to diagnose whether the fission source iteration diverges because of too large a macro-time-step size used for a positive reactivity insertion. To improve the convergence of the fission source iteration, exponential transformation is also applied. In addition, the variances of MC tallies can be reduced by increasing the number of active fission source iterations. For method and code verification, the PCQS method for the MC calculation with fission source iteration is compared with the implicit Euler method for a method-of-characteristics calculation on a two-dimensional TWIGL problem. For both multigroup energy and continuous-energy three-dimensional test problems, the proposed method efficiently reduces computing time with a large macro-time-step size, while the accuracy of the solutions is maintained, compared with those calculated with smaller macro-time-step sizes.