ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
L. Pantera, Y. Garnier, F. Jeury
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 247-260
Technical Paper | doi.org/10.13182/NSE15-77
Articles are hosted by Taylor and Francis Online.
The CABRI facility is an experimental nuclear reactor of the French Atomic Energy Commission (CEA) designed to study the behavior of fuel rods at high burnup under reactivity initiated accident conditions, such as a control rod ejection. The distinctive feature of this reactor is its reactivity injection system. The power can rise from 100 kW to 25 GW in a few milliseconds. To know the energy released into a test rod, it is necessary to access the driver core power online. The neutron flux is measured online by compensated boron chambers. These neutron detectors are calibrated during the commissioning phase thanks to standards given by a conventional heat balance. The boron chamber signal depends on the temperature of the pool and the magnitude of the core power according to a nonlinear multivariate model. The uncertainties of the standards and those of the neutron chamber signal cannot be neglected. Moreover, the size of the sample is very small due to the operational constraints. A classic regression method does not take into account all these parameters. In such a situation, we show how the statistical bootstrap method can prove to be a useful and easy tool in tackling this issue. This paper describes first the adjustment of the calibration model that will be used for the prediction during the core power transient and second how we take into account both the uncertainties of the physical variables and the small size of the experimental sample.