ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
M. Drosg, G. Haouat, D. M. Drake
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 298-303
Technical Note | doi.org/10.13182/NSE15-118
Articles are hosted by Taylor and Francis Online.
Monoenergetic neutron production by nuclear reactions among light elements and the production of white neutrons by such reactions are of particular interest for fusion applications. Data reduction of continuous neutron spectra is generally hampered by a lack of adequate background spectra. To find the best background spectrum for the measurement of 3H(t,n) double-differential cross sections, much effort was applied to determining a reliable background spectrum stemming from a tritium gas cell. Since the measurement of the 2H(t,n)4He reaction that was used for the efficiency determination used the same gas cell, the same background spectra could be used, and continuous neutron spectra stemming from the three-body (n+X+Y) reactions of 2H(t,n)X+Y could be extracted reliably. Thus, double-differential three-body neutron production cross sections were determined at 5.97, 7.47, 10.45, and 16.41 MeV, at angles between 0 and 90 deg with a scale uncertainty of <4%. Corresponding data with projectile and target particles exchanged are available in the same center-of-mass energy range with uncertainties of ~25%.