ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
ANS Congressional Fellowship applications due
Applications for the Society’s Glenn T. Seaborg Congressional Science and Engineering Fellowship will be closing soon. Congressional Fellows can directly contribute to the federal policymaking process, working in either a U.S. senator’s or representative’s personal office or with a congressional committee. They will be responsible for supplying Congress with their expertise in nuclear science and technology, having a hand in the creation of new laws while gaining a deeper understanding of the legislative process.
Kyle Remley, Farzad Rahnema
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 161-172
Technical Paper | doi.org/10.13182/NSE15-97
Articles are hosted by Taylor and Francis Online.
This paper presents a formulation for a method for the adaptive selection of angular flux expansion orders for use in COarse MEsh radiation Transport (COMET) method solutions to whole-core reactor problems. An important aspect of the COMET method is an assumed angular flux expansion on mesh interfaces. Previously, this expansion was held constant throughout a problem. However, the adaptive method described in this paper chooses the angular flux expansions automatically and allows them to vary between meshes. To demonstrate the method, a pressurized water reactor benchmark problem with UO2 and mixed oxide fuel assemblies is solved. Three different configurations for different insertions of control rods were considered. For all configurations, the agreement between the standard and adaptive COMET solutions was excellent, with eigenvalue agreement being 2 pcm or less and average pin fission errors never exceeding 0.1%. Increases in computational efficiency by factors of 2 to 2.6 were observed over standard COMET solutions employing the full flux expansion considered in the problem. In addition, a lower flux expansion suggested by literature as well as the results of the adaptive calculation was used in the standard COMET method to solve the problem. The adaptive COMET solution has a run time similar to this lower expansion, which is to be expected since many of the flux expansions chosen with the adaptive method match this lower flux expansion. The results of this study are encouraging and imply that adaptive COMET solutions improve upon the standard method by increasing computational efficiency when a flux expansion is used that is higher than required for desired accuracy. The method also limits the need for intuition and numerical experimentation in achieving flux expansions that result in COMET calculations that achieve satisfactory accuracy.