ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Dan G. Cacuci, Milica Ilic, Madalina C. Badea, Ruixian Fang
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 22-38
Technical Paper | doi.org/10.13182/NSE15-80
Articles are hosted by Taylor and Francis Online.
This work presents numerical results for the second-order sensitivities of the temperature distributions in a paradigm benchmark problem modeling heat transport in a reactor fuel rod and the surrounding coolant channel. The development of this benchmark problem was originally motivated by the need to verify the numerical results for the first-order sensitivities produced by the FLUENT Adjoint Solver for the G4M Reactor preconceptual design and for a test section designed to investigate thermal-hydraulic phenomena of importance to the safety considerations for this reactor. The relative sensitivities computed using the FLUENT Adjoint Solver had significantly large values, of order unity, thereby motivating the need to investigate the impact of nonlinearities, the bulk of which are quantified by the responses’ second-order sensitivities. However, the current FLUENT Adjoint Solver cannot compute second-order sensitivities, which in turn motivated the derivation of these sensitivities for the heat transport benchmark problem by using the recently developed second-order adjoint sensitivity analysis methodology.
The numerical results obtained in this work used thermal-hydraulic parameters having mean values and standard deviations typical of the conditions found in the preliminary conceptual design of the G4M Reactor. These results show that the contributions of the second-order sensitivities to the expected values of the temperature distributions within the rod, on the rod’s surface, and in the coolant are <1% of the corresponding computed nominal values. Similarly, the contributions of the second-order sensitivities to the standard deviations of the temperature distributions within the rod, on the rod’s surface, and in the coolant are also 1%, or less, of the corresponding contributions stemming from the first-order sensitivities, to the respective total standard deviations (uncertainties). These results justify the use of first-order sensitivities for computing expected uncertainties in the temperature distributions within the benchmark problem and, hence, mutatis mutandis, for the test section and G4M Reactor design.
On the other hand, the most important impact of the second-order sensitivities is the positive skewnesses they induce in the temperature distributions within the rod, on the rod’s surface, and in the coolant. This implies that all three temperature distributions, particularly in the heated rod, are non-Gaussian, asymmetric, and skewed toward temperatures higher than the respective mean temperatures.