ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
M. Drosg
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 143-148
Technical Note | doi.org/10.13182/NSE15-65
Articles are hosted by Taylor and Francis Online.
The continuous neutron spectrum from the t→d+n breakup reaction can best be extracted in the 3H(p,n)3He and 4He(t,n)6Li reactions because of minimum neutron background in both cases. Only for the latter reaction are neutron background spectra also available. These data were measured at 11.88-MeV triton energy at eight angles between 0 and 120 deg. As a test for the validity of the procedure, angle-dependent differential cross sections of 4He(t,n)6Li were extracted and converted to 6Li(n,t)4He at En = 2.32 MeV by detailed balance calculation thus contributing to the R-matrix analysis of the 7Li system. The double-differential and neutron energy integrated cross sections at that energy are given as well as those for the triton breakup of the time-reversed reaction.