ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
U. B. Phathanapirom, E. A. Schneider
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 502-522
Technical Paper | doi.org/10.13182/NSE15-25
Articles are hosted by Taylor and Francis Online.
This paper introduces a new methodology for explicitly incorporating uncertainties in key parameters into decision making regarding the transition between various nuclear fuel cycles. These key uncertainties—in demand growth rates, technology availability, and technology costs, among others—are unlikely to be resolved for several decades and invalidate the concept of planning for a unique optimal transition strategy. Past time-dependent analyses of the nuclear fuel cycle have confronted uncertainties by using a scenario-based approach where key variables are parametrically varied, which gives rise to inflexible courses of action associated with optima for each scenario. Instead, this work selects hedging strategies through a decision making under uncertainty framework. These strategies are found by applying a choice criterion to select courses of action that mitigate regrets. These regrets are calculated by evaluating the performance of all possible transition strategies for every feasible outcome of the uncertain parameter(s). The methodology is applied to a case study involving transition from the current once-through light water reactor fuel cycle to one relying on continuous recycle in fast reactors, and the effect of choice criterion is explored. Hedging strategies are found that preserve significant flexibility to allow alteration of the fuel cycle strategy once these uncertainties are resolved. This work may provide guidance for agent-based, behavioral modeling in fuel cycle simulators as well as decision making in real-world applications.