ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
Dimitar Altiparmakov, Robert Wiersma
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 395-416
Technical Paper | doi.org/10.13182/NSE15-28
Articles are hosted by Taylor and Francis Online.
The size and the density of the collision probability matrix have been recognized as major deficiencies since the early era of development of the collision probability method. The computing time of the matrix inversion is proportional to the third degree of the number of unknowns per group and increases rapidly with the increase of the problem size. This is a severe limitation that restricts the capabilities of the method and makes it inapplicable to large-size neutron transport problems. This paper presents a new solution method that overcomes these deficiencies and extends the capabilities of the collision probability approximation. To reduce the matrix inversion time, a block partition is applied, and the solution is obtained by block iteration. Owing to the partition, the method is suitable for parallel calculations on contemporary computers. To illustrate the potential advantages, the following three groups of calculations are presented. In the first group, results of sequential calculations reveal the advantage over traditional methods of direct solution and point iteration. In the second group, memory shared parallelism results present the speedup that can be achieved in solving medium-size problems on a standard multicore desktop computer. In the third group, distributed memory calculations show an example of the solution of a large-size two-dimensional model problem of a heavy water power reactor invoking 100 thousand unknowns per group.