ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Han-Jie Cai, Fen Fu, Jian-Yang Li, Ya-Ling Zhang, Xun-Chao Zhang, Xue-Song Yan, Zhi-Lei Zhang, Jian-Ya Xv, Mei-Ling Qi, Lei Yang
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 107-115
Technical Paper | doi.org/10.13182/NSE15-59
Articles are hosted by Taylor and Francis Online.
The Institute of Modern Physics, Chinese Academy of Sciences performs research and development on the target station of an accelerator-driven system (ADS) under the China ADS project. A newly developed Monte Carlo program for the design of the target station named GMT1.0 is presented. The program is designed for a massively parallelized simulation of the initiative granular-flow target concept. Based on the combination of the Intranuclear Cascade of Leige (INCL) model and the ABLA evaporation/fission model, GMT1.0 integrates a particle transport code and a nuclear reaction code to simulate a spallation target. For validation, a series of calculations of neutronics characteristics and heat-deposit distributions of solid targets were performed, and a high degree of accuracy was shown for GMT1.0. Using GMT1.0, a systematic study of the neutron economy of the target was performed and the neutronics characteristics of the most optimal parameters were illustrated well.