ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
Manfred Drosg, Bernard Hoop
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 563-570
Technical Note | doi.org/10.13182/NSE15-57
Articles are hosted by Taylor and Francis Online.
Estimated cross sections for neutron production from triton bombardment of gold are deduced from measurements of triton interactions with gas targets that used gold as a triton beam stop material. Differential cross sections for production of neutrons from 5.97-, 7.47-, 10.45-, 16.41- and 19.14-MeV tritons on 197Au were evaluated. Corrections for the neutron interaction in gold, in the target structure, and in the air of the flight path were obtained by means of a Monte Carlo technique. Uncorrelated scale uncertainties range from 24% to 41% whereas those of double-differential cross sections range from 0.2% to 5%. Based on these cross-section data, calculation of neutron yield at 0 deg from fully stopped tritons at 20.22 MeV agrees with an independent measurement. Least-squares fits with a gamma distribution model indicate an anisotropy in the high-energy portion of the neutron spectra. Legendre polynomial fits of differential cross sections are reported. All neutron cross-section data are made available through the Experimental Nuclear Reaction Data (EXFOR) library at international data centers.