ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sai K. Mylavarapu, Xiaodong Sun, Richard N. Christensen
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 319-331
Technical Paper | doi.org/10.13182/NSE14-107
Articles are hosted by Taylor and Francis Online.
Hydrodynamically developing and fully developed laminar flows in a semicircular duct are numerically and analytically investigated, respectively. As part of the analytical approach, scale analysis is used to develop order-of-magnitude estimates for the friction factor–Reynolds number product for developing and fully developed laminar flows in a semicircular duct. Dimensionless axial velocity distribution is determined and presented in terms of the dimensionless pressure drop constant for hydrodynamically fully developed laminar flow. Fully developed laminar frictional characteristics for flow through a semicircular duct are then deduced from the dimensionless axial velocity distribution, from which the location of maximum axial velocity and the ratio of maximum axial velocity to the mean axial velocity are determined. In addition, hydrodynamically developing laminar flow in a semicircular duct is numerically analyzed. Various developing flow region parameters, such as the apparent Fanning friction factor and incremental pressure drop number, for laminar flows in a semicircular duct are determined from the numerical analysis. Furthermore, the fully developed laminar flow results obtained from the numerical analysis are compared with the analytical solution, and good agreement is observed between them.