ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
Shawn A. Campbell, John Palsmeier, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 287-296
Technical Paper | doi.org/10.13182/NSE15-40
Articles are hosted by Taylor and Francis Online.
The nuclear source term is greatly affected by the formation and presence of aerosols in the reactor primary vessel and the containment. In simulations, the aerosol distribution is often assumed spatially homogeneous (well mixed), and there have been relatively few studies of the effects of spatial inhomogeneity on aerosol evolution in nuclear accidents. We have explored here an extension of some of our recent work on the Direct Simulation Monte Carlo (DSMC) method to spatially inhomogeneous aerosol. In doing so, we have also departed from the traditional applications of the DSMC method where the computational domain is divided into fixed cells. We have explored here an alternative, mesh-free method by utilizing a clustering technique. This technique associates particles according to a distance parameter and is commonly used in group theory and machine learning. To benchmark this mesh-free modeling, we have verified the DSMC results against those obtained from the use of the cell balanced sectional technique for a spherical geometry where both coagulation and diffusion take place.