ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Maria Pusa
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 297-318
Technical Paper | doi.org/10.13182/NSE15-26
Articles are hosted by Taylor and Francis Online.
The burnup equations can, in principle, be solved by computing the exponential of the burnup matrix. However, the problem is extremely stiff, and the matrix exponential solution was long considered infeasible for entire burnup systems containing short-lived nuclides. After discovering that the eigenvalues of burnup matrices are confined to the vicinity of the negative real axis, the Chebyshev rational approximation method (CRAM) was introduced for solving the burnup equations and it was shown to be capable of providing accurate and efficient solutions without the need to exclude the short-lived nuclides. The main difficulty in using CRAM is determining the coefficients of the rational approximant for a given approximation order, with the previously published coefficients enabling only approximations up to order 16 for computing the matrix exponential. In this paper, a Remez-type method is presented for the computation of higher-order CRAM approximations. The optimal form of CRAM for the solution of burnup equations is discussed, and the method of incomplete partial fractions is proposed for this purpose. The CRAM coefficients based on this factorization are provided for approximation orders 4, 8, 12, . . ., 48. The accuracy of the method is demonstrated by applying it to large burnup and decay systems. It is shown that higher-order CRAM can be used to solve the burnup equations accurately for time steps of the order of 1 million years.