ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Blair P. Bromley, Geoffrey W. R. Edwards, Pranavan Sambavalingam
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 263-286
Technical Paper | doi.org/10.13182/NSE15-19
Articles are hosted by Taylor and Francis Online.
Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels and power history on the reactivity and achievable burnup for 35-element fuel bundles made with thorium-based fuels, such as (Pu,Th)O2 and (233U,Th)O2. These bundles are designed to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700-MW(electric)–class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Methods have been developed to model time-dependent power histories in lattice physics calculations that are more consistent with core physics analysis results. Results demonstrate that the impact of power/flux level and the modeling of time-dependent power histories on the core power distributions and achievable fuel burnup are modest for Pu/Th fuels but are more significant for 233U/Th fuels. Thus, to reduce the neutron capture rate in 233Pa and to increase fuel burnup and fissile utilization, there may be an incentive to develop solutions to reduce the time-average specific power in the fuel.