ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
Imre Pázsit, Cristina Montalvo, Henrik Nylén, Tell Andersson, Augusto Hernández-Solís, Petty Bernitt Cartemo
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 213-227
Technical Paper | doi.org/10.13182/NSE15-14
Articles are hosted by Taylor and Francis Online.
Core-barrel motion (CBM) surveillance and diagnostics, based on the amplitude of the peaks of the normalized auto power spectral densities (APSDs) of the ex-core neutron detectors, have been performed and continuously developed in Sweden and were applied for monitoring of the three PWR units, Ringhals 2 to 4. From 2005, multiple measurements were taken during each fuel cycle, and these revealed a periodic behavior of the 8-Hz peak of the beam-mode motion: the amplitude increases within the cycle and returns to a lower value at the beginning of the next cycle. The work reported in this paper aims to clarify the physical reason for this behavior. A combination of a mode separation method in the time domain and a nonlinear curve-fitting procedure of the frequency spectra revealed that two types of vibration phenomena contribute to the beam-mode peak. The lower frequency peak around 7 Hz in the ex-core detector APSDs corresponds to the CBM, whose amplitude does not change during the cycle. The higher frequency peak around 8 Hz arises from the individual vibrations of the fuel assemblies, and its amplitude increases monotonically during the cycle. This paper gives an account of the work that has been made to verify the above hypothesis.