ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
YuGwon Jo, Nam Zin Cho
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 181-196
Technical Paper | doi.org/10.13182/NSE14-150
Articles are hosted by Taylor and Francis Online.
We present a new method for whole-core Monte Carlo calculation using space domain decomposition to alleviate the excessive memory requirement due to massive tallies. The proposed method is called the fission and surface source (FSS) iteration method; it is based on banking both the fission and surface sources for the next iteration to provide exact boundary conditions for nonoverlapping local problems. To accelerate source convergence during inactive iterations, the p-CMFD (partial current–based coarse-mesh finite difference) method is applied to adjust the weights of the fission and surface sources. While domain-based parallelization is easily implemented using the proposed FSS iteration method, the computing times for the local problems will be different, depending on specific local problems, which may cause idle times of the processors to wait for the results from other local problems. To reduce the idle times, we apply a source-splitting scheme to the FSS iteration method to level the expected numbers of the sources of local problems. The performance of the FSS iteration method is tested on two-dimensional, continuous-energy reactor problems, with encouraging results.