ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
YuGwon Jo, Nam Zin Cho
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 181-196
Technical Paper | doi.org/10.13182/NSE14-150
Articles are hosted by Taylor and Francis Online.
We present a new method for whole-core Monte Carlo calculation using space domain decomposition to alleviate the excessive memory requirement due to massive tallies. The proposed method is called the fission and surface source (FSS) iteration method; it is based on banking both the fission and surface sources for the next iteration to provide exact boundary conditions for nonoverlapping local problems. To accelerate source convergence during inactive iterations, the p-CMFD (partial current–based coarse-mesh finite difference) method is applied to adjust the weights of the fission and surface sources. While domain-based parallelization is easily implemented using the proposed FSS iteration method, the computing times for the local problems will be different, depending on specific local problems, which may cause idle times of the processors to wait for the results from other local problems. To reduce the idle times, we apply a source-splitting scheme to the FSS iteration method to level the expected numbers of the sources of local problems. The performance of the FSS iteration method is tested on two-dimensional, continuous-energy reactor problems, with encouraging results.