ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
Staffan Qvist, Ehud Greenspan
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 197-212
Technical Paper | doi.org/10.13182/NSE14-135
Articles are hosted by Taylor and Francis Online.
For a reactor to establish a sustainable breed-and-burn (B&B) mode of operation, its fuel has to reach a minimum level of average burnup. The value of the minimum required average discharge burnup strongly depends on the core design details. Using the extended neutron balance method, it is possible to quantify the impact of major core design choices on the minimum required burnup in a B&B core. Relevant design variables include the fuel chemical form, nonactinide mass fraction of metallic fuel, feed-fuel fissile fraction, fuel rod pitch-to-diameter ratio (P/D), average neutron flux level, and fraction of neutron loss. Metallic fuels have been found to be the only viable fuel options for a realistic near-term B&B reactor. For the core designs we have studied, it was not possible to sustain B&B operation using oxide fuel that is not enriched, while nitride and carbide fuels may only work in highly ideal low-leakage systems at very high levels of discharge burnup and, hence, neutron irradiation damage. The minimum required burnup increases strongly with the total fraction of neutrons that is lost to leakage and reactivity control. The flux level has no effect on the neutron balance within the applicable range, and the average discharge burnup is also relatively insensitive to the fraction of fissile material in the feed fuel in the range from depleted uranium (0.2% 235U) to natural uranium (0.71% 235U). The minimum required burnup is most sensitive, in order of importance, to the fractional loss of neutrons, the Zr content in metallic fuel, and the fuel rod P/D. Changing the weight fraction of zirconium in metallic fuel by 1% (for example, from 10% to 9%) gives the same change in required discharge burnup as adjusting the P/D by 0.02 (for example, from 1.10 to 1.12).