ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Staffan Qvist, Ehud Greenspan
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 197-212
Technical Paper | doi.org/10.13182/NSE14-135
Articles are hosted by Taylor and Francis Online.
For a reactor to establish a sustainable breed-and-burn (B&B) mode of operation, its fuel has to reach a minimum level of average burnup. The value of the minimum required average discharge burnup strongly depends on the core design details. Using the extended neutron balance method, it is possible to quantify the impact of major core design choices on the minimum required burnup in a B&B core. Relevant design variables include the fuel chemical form, nonactinide mass fraction of metallic fuel, feed-fuel fissile fraction, fuel rod pitch-to-diameter ratio (P/D), average neutron flux level, and fraction of neutron loss. Metallic fuels have been found to be the only viable fuel options for a realistic near-term B&B reactor. For the core designs we have studied, it was not possible to sustain B&B operation using oxide fuel that is not enriched, while nitride and carbide fuels may only work in highly ideal low-leakage systems at very high levels of discharge burnup and, hence, neutron irradiation damage. The minimum required burnup increases strongly with the total fraction of neutrons that is lost to leakage and reactivity control. The flux level has no effect on the neutron balance within the applicable range, and the average discharge burnup is also relatively insensitive to the fraction of fissile material in the feed fuel in the range from depleted uranium (0.2% 235U) to natural uranium (0.71% 235U). The minimum required burnup is most sensitive, in order of importance, to the fractional loss of neutrons, the Zr content in metallic fuel, and the fuel rod P/D. Changing the weight fraction of zirconium in metallic fuel by 1% (for example, from 10% to 9%) gives the same change in required discharge burnup as adjusting the P/D by 0.02 (for example, from 1.10 to 1.12).