ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
G. L. Mesina, D. L. Aumiller, F. X. Buschman
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 1-12
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE14-151
Articles are hosted by Taylor and Francis Online.
Large computer programs like RELAP5-3D solve complex systems of governing, closure, and special process equations to model the underlying physics of thermal-hydraulic systems and include specialized physics for the modeling of nuclear power plants. Further, these programs incorporate other mechanisms for selecting optional code physics, input, output, data management, user interaction, and post-processing. Before being released to users, software quality assurance requires verification and validation. RELAP5-3D verification and validation are focused toward nuclear power plant applications. Verification ensures that the program is built right by checking that it meets its design specifications, comparing coding algorithms to equations, comparing calculations against analytical solutions, and the method of manufactured solutions.
Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. An automated, highly accurate sequential verification method, based on previous work by Aumiller, has been developed for RELAP5-3D. It provides the ability to test that no unintended consequences result from code development. Moreover, it provides the means to test the following code capabilities: repeated time-step advancement, runs continued from a restart file, and performance of coupled analyses using the R5EXEC executive program. Analyses of the adequacy of the checks used in these comparisons are provided.