ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Liang-Che Dai, Chung-Yu Yang, Yng-Ruey Yuann, Bau-Shei Pei, Chun-Kuan Shih
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 96-103
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE14-145
Articles are hosted by Taylor and Francis Online.
According to “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants” (NUREG-0800) of the U.S. Nuclear Regulatory Commission, the homogeneous and thermal equilibrium critical flow model (HEM model) is acceptable for pressure and temperature analysis of the subcompartment of the containment. However, it was not built into the RELAP5-3D code. In order to provide the blowdown boundary conditions that meet the acceptance criteria for the subcompartment pressure and temperature response analysis, Institute of Nuclear Energy Research implemented and assessed the Moody HEM model of RELAP5-3D. The assessment phase was subsequent to the implementation of the Moody HEM model of RELAP5-3D. Three experiments of Marviken critical flow tests (CFTs) were selected as the assessment cases. They were CFT 15, CFT 22, and CFT 24. The assessment input decks of RELAP5-3D had been modified from the appendixes of the references. Additional comparisons with the results of the RELAP5-3D built-in Ransom-Trapp and Henry-Fauske critical flow models were also included. The comparisons of the calculated blowdown mass flow rate with the test data assessed the newly implemented model, which gave good prediction. Moreover, the comparisons between the results of the critical flow models of RELAP5-3D and the test data provided a measure of the relative conservatism of the critical flow calculations.