ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Nathan E. White, Sudarshan K. Loyalka
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 318-330
Technical Paper | doi.org/10.13182/NSE15-10
Articles are hosted by Taylor and Francis Online.
In high-temperature gas-cooled reactors (HTGRs), carbonaceous dust can be generated both during normal operations and during accidents. The dust particles can be highly irregular and highly porous and have very large surface areas that may make dust-facilitated (or dust-hindered) fission product (FP) transport a major factor. Since the FP interactions with dust can occur while the dust is on a surface as well as in suspension, there is a need to obtain computational and experimental results for both situations. In 2014, Smith and Loyalka used the Green's Function Method to study condensation (results for absorption/deposition and evaporation are generally directly related to the condensation problem) on chainlike particles and particle agglomerates in the diffusion regime. In 2010, Smith and Loyalka made progress in computation of evaporation/condensation particles on a surface, but again in the diffusion regime. Since the particle sizes of interest span a wide range—from nanometers to microns (10−9 m to 10−6 m)—and are also porous with small pores and pathways for FPs, these computations need to be extended to the transport regime where the particle sizes (and/or pores) are comparable to the vapor (FP) molecular mean free path (∼0.05 μm) in the gaseous phase (air or helium, or some mix thereof with other contaminants). The focus of the present paper is on Monte Carlo computation of condensation rate on chainlike particles and particle agglomerates in the transport regime using the one-speed approximation, and we report a number of new results that provide new insights and path for future explorations.