ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Pengcheng Li, Matthew T. Bernards
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 310-317
Technical Paper | doi.org/10.13182/NSE15-2
Articles are hosted by Taylor and Francis Online.
Radioactive iodine gas is a problematic species in multiple nuclear energy–related applications. Therefore, it is highly desirable to develop an adsorbent that has a high capacity for iodine. In this investigation, the iodine adsorption capacity of high-purity magnesium oxide was investigated as a function of the calcination conditions. Differences in the magnesia substrates were characterized by scanning electron microscopy and X-ray diffraction, and the iodine adsorption capacity was determined using thermogravimetric analysis. The results indicate that the calcination temperature and time have a significant impact on the adsorption capacity, with longer times and higher temperatures having a negative impact. However, under the optimal calcination conditions identified in this study (550°C for 20 min), the high-purity magnesia was found to have an adsorption capacity >300 mg of iodine per gram of sorbent. This suggests that magnesia holds promise for nuclear applications where iodine gas adsorption would be beneficial.