ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 181 | Number 2 | October 2015 | Pages 204-215
Technical Paper | doi.org/10.13182/NSE14-106
Articles are hosted by Taylor and Francis Online.
Advanced fast reactor concepts, such as the CFV core (French acronym of “Coeur à Faible effet de Vide Sodium,” meaning “low sodium void effect core”), are characterized by a heterogeneous axial core arrangement, with an inner fertile zone and a sodium plenum above the fuel. Such concepts represent a strong challenge for accurate predictions of the control-rod antireactivity effects, and the surrounding local fuel pin power. Classical equivalence procedures, which were developed for axially homogeneous cores, are put to the test when applied to such axially heterogeneous cores. In this work, we investigate the influence of variations in the local neutron spectra, for different control-rod environments, with the objective of understanding the impact of spectral variations in control-rod homogenization. This was conducted by considering a simple one-dimensional model of the equivalence procedure in which a transition zone between the fuel and control rod was introduced to represent different control-rod environments. Two types of situations were studied, one corresponding to softened neutron spectrum environments, for which the impact in the homogenized control-rod cross section was found to be smaller than 5%. The second situation was with wide elastic scattering resonances in the control-rod environment, which could locally lead to differences of up to 15% in the resulting equivalent cross sections. The reactivity effect of these changes was calculated to be less than 2%. In some cases, the numerical stability of the equivalence procedure was adversely affected, mainly in high-energy groups, due to the softening of the neutron spectra.