ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Akio Yamamoto, Kuniharu Kinoshita, Tomoaki Watanabe, Tomohiro Endo, Yasuhiro Kodama, Yasunori Ohoka, Tadashi Ushio, Hiroaki Nagano
Nuclear Science and Engineering | Volume 181 | Number 2 | October 2015 | Pages 160-174
Technical Paper | doi.org/10.13182/NSE14-152
Articles are hosted by Taylor and Francis Online.
Uncertainties of various neutronics characteristics in commercial boiling water reactor (BWR) and pressurized water reactor (PWR) cores due to cross-section covariance are evaluated by the Latin Hypercube Sampling (LHS) method, which is an efficient random sampling algorithm. Thermal-hydraulic feedback and burnup effects are fully and explicitly taken into account using a licensing-grade core simulator. Uncertainties for various core characteristics are evaluated by the statistical processing of core calculation results based on the LHS method. The calculation results indicate that uncertainty of critical eigenvalue (i.e., core reactivity) in the BWR core is comparable to that of a typical PWR core. On the other hand, uncertainties of assembly relative power distribution and maximum assembly burnup in the present BWR core are much smaller than those of the present PWR core. The strong thermal-hydraulic feedback effect in the BWR core significantly contributes to the difference of uncertainties in BWR and PWR cores.