ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Seungsu Yuk, Nam Zin Cho
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 1-16
Technical Paper | doi.org/10.13182/NSE14-88
Articles are hosted by Taylor and Francis Online.
In this paper, we present two novel approaches to reactor core analysis: (1) whole-core fine-group deterministic transport calculations are accelerated by a partial-current-based coarse-mesh finite-difference (p-CMFD) method, and (2) a whole-core domain is decomposed into nonoverlapping local problems, with local problem transport solutions then embedded within the p-CMFD methodology in a two-level iterative scheme to provide a whole-core transport solution. To solve three-dimensional (3-D) reactor problems, both approaches use the two-dimensional/one-dimensional (2-D/1-D) fusion method as a solution kernel, which employs a 2-D method of characteristics in the radial direction and a 1-D SN-like method in the axial direction. A refinement sensitivity study of a 3-D boiling water reactor assembly problem shows the stability and accuracy of the 2-D/1-D fusion method. We report the results of these two approaches as applied to three whole-core configurations of the C5G7 OECD/NEA 3-D benchmark problem and to a modified C5G7 benchmark problem with explicitly modeled cladding.