ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Risto Vanhanen
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 60-71
Technical Paper | doi.org/10.13182/NSE14-105
Articles are hosted by Taylor and Francis Online.
It is not uncommon that the covariances of multigroup nuclear data do not obey the sum rules of nuclear data. We present a matrix nearness problem of finding a nearest symmetric matrix with given null vectors and solve it when the distance is measured in the Frobenius norm. The problem appears to be new. We propose that the method should be used to find nearest consistent multigroup covariance matrices with respect to the sum rules of redundant nuclear data.
If the multigroup covariances cannot be easily interpreted in a consistent manner, there is some ambiguity in choosing values for the covariances that are not explicitly mentioned. We present and compare a simple and a heuristic characterization method.
Three practical examples are processed and analyzed: relative covariances of cross sections of 9440Zr and absolute covariances of cross sections of 5024Cr and 23290Th. We demonstrate that satisfactory results can be achieved.
We discuss the properties of the proposed method and the characterization methods and suggest possible improvements. The methods can be used as a part of a quality assurance program and might be valuable additions to nuclear data processing codes.