ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Ahmad M. Ibrahim, Paul P. H. Wilson, Mohamed E. Sawan, Scott W. Mosher, Douglas E. Peplow, John C. Wagner, Thomas M. Evans, Robert E. Grove
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 48-59
Technical Paper | doi.org/10.13182/NSE14-94
Articles are hosted by Taylor and Francis Online.
The well-established Consistent Adjoint Driven Importance Sampling (CADIS) and the Forward Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) hybrid Monte Carlo/deterministic techniques have dramatically increased the efficiency of neutronics simulations, yielding accurate solutions for increasingly complex problems through full-scale, high-fidelity simulations. However, for full-scale simulations of very large and geometrically complex nuclear energy systems, even the CADIS and FW-CADIS techniques can reach the CPU and memory limits of all but the very powerful supercomputers. In this work, three mesh adaptivity algorithms were developed to reduce the computational resource requirements of CADIS and FW-CADIS without sacrificing their efficiency improvements. First, a macromaterial approach was developed to enhance the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm was developed to generate meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window (WW) coarsening (WWC) algorithm was developed to decouple the WW mesh and energy bins from the mesh and energy group structure of the deterministic calculations. By removing the memory constraint of the WW map from the resolution of the mesh and the energy group structure of the deterministic calculations, the WWC algorithm allows higher-fidelity deterministic calculations that, consequently, increase the efficiency and reliability of the CADIS and the FW-CADIS simulations. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms increased both the number of mesh tally elements in which nonzero results were obtained (+23.3%) and the overall efficiency of the calculation (a factor of >3.4). The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a 94-CPU computer cluster, eliminating the need for a world-class supercomputer.