ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Optimizing Maintenance Strategies in Power Generation: Embracing Predictive and Preventive Approaches
In the high-stakes world of power generation, ensuring continuous operation and reducing downtime are central priorities. With the increasing complexity of power generation systems, maintenance practices are evolving to meet these demands more efficiently. Understanding the roles of Predictive Maintenance (PdM), Preventive Maintenance (PM), and Reactive Maintenance (Run-to-Failure) is crucial for maintenance professionals in the energy sector to make informed decisions about equipment management and long-term operational strategy.
Zoltán Perkó, Danny Lathouwers, Jan Leen Kloosterman, Tim H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 345-377
Technical Note | doi.org/10.13182/NSE14-17
Articles are hosted by Taylor and Francis Online.
The nuclear community relies heavily on computer codes both in research and in the operation of installations. The results of such computations are useful only if they are augmented with sensitivity and uncertainty studies. This technical note presents some theoretical considerations regarding traditional first-order sensitivity analysis and uncertainty quantification involving constrained quantities. The focus is on linear constraints, which are often encountered in reactor physics problems due to energy and angle distributions, or the correlation between the isotopic abundances of elements.
A consistent theory is given for the derivation and interpretation of constrained first-order sensitivity coefficients; covariance matrix normalization procedures; their interrelation; and the treatment of constrained inputs with polynomial chaos expansion, which was the main motivation of this research. It is shown that if the covariance matrix violates the “generic zero column and row sum” condition, normalizing it is equivalent to constraining the sensitivities, but since both can be done in many ways, different sensitivity coefficients and uncertainties can be derived. This makes results ambiguous, underlining the need for proper covariance data. Furthermore, it is highlighted that certain constraining procedures can result in biased or unphysical uncertainty estimates. To confirm our conclusions, we demonstrate the presented theory on three analytical and two numerical examples including fission spectrum, isotopic distribution, and power distribution-related uncertainties, as well as the correlation between mass, volume, and density.