ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
ANS Congressional Fellowship applications due
Applications for the Society’s Glenn T. Seaborg Congressional Science and Engineering Fellowship will be closing soon. Congressional Fellows can directly contribute to the federal policymaking process, working in either a U.S. senator’s or representative’s personal office or with a congressional committee. They will be responsible for supplying Congress with their expertise in nuclear science and technology, having a hand in the creation of new laws while gaining a deeper understanding of the legislative process.
Aarno Isotalo
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 286-300
Technical Paper | doi.org/10.13182/NSE14-92
Articles are hosted by Taylor and Francis Online.
Four schemes for coupling the neutronics and depletion in burnup calculations are compared in four assembly segment test cases with various step lengths. Three of the coupling schemes use only one transport solution per step. While none of the methods was superior in every test case or in every respect, there are significant differences that can make one or the other preferable in different applications. The fourth method included in the comparison is the one dubbed CE/CM in our previous study, which compares schemes that use two transport solutions per step. The methods using only one transport solution per step were found to be more accurate than CE/CM but less accurate than the newer LE/LI and LE/QI methods. In cases where desired output intervals, rather than accuracy, are the limiting factor for step lengths, methods using only one transport solution per step can still provide a major advantage even when compared to LE/LI and LE/QI. Significant differences were also observed in the propagation of the statistical uncertainty from Monte Carlo neutronics through the different methods. While this topic was not studied further, it seems that differences in error propagation may in some cases be as significant as those in accuracy.