ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Mei-Ya Wang, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 335-340
Technical Paper | doi.org/10.13182/NSE14-97
Articles are hosted by Taylor and Francis Online.
For further improvements on thermal efficiency and operation safety, reactor internal pumps, instead of conventional recirculation systems, are adopted in an advanced boiling water reactor (ABWR). With the novel design of internal circulation, the traveling path and pattern of the recirculated liquid coolant in an ABWR is actually different from that of the coolant in a conventional boiling water reactor. To ensure operation safety, optimization of the coolant chemistry in the primary coolant circuit (PCC) of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding of the water chemistry in an ABWR, such as the one being constructed in the northern part of Taiwan, and for safer operation of this ABWR, in this study we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor. A well-developed computer code was used to investigate the effectiveness of hydrogen water chemistry (HWC) on the redox species concentrations and electrochemical corrosion potential (ECP) behavior of components in the PCC of the Lungmen ABWR in Taiwan. Our analyses indicated that the effective oxidant concentrations at the top of the downcomer location would be expected to be >100 ppb at 0.5 ppm [H2]FW at the original rated power. While an effective ECP reduction at 0.4 ppm [H2]FW was observed at the downcomer outlet, a 2.0 ppm [H2]FW was not enough to reduce the ECP below the Ecrit at the upper plenum outlet. In summary, the effectiveness of HWC in the PCC of an ABWR is expected to vary from location to location and eventually from plant to plant due to different degrees of radiolysis and physical dimensions in different ABWRs.