ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Ansar Calloo, Jean-François Vidal, Romain Le Tellier, Gérald Rimpault
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 182-198
Technical Paper | doi.org/10.13182/NSE14-57
Articles are hosted by Taylor and Francis Online.
In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law on Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with nonzero values for a small range of the scattering angle. The finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of these cross sections. As such, the Legendre expansion is less well suited to represent the scattering law. Furthermore, this model induces negative values, which are nonphysical. Piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. Thus, the finite-volume method for angular discretization has been developed and implemented in the PARIS environment. This method is adapted for both the Legendre moments and the piecewise-constant functions representations. It provides reference deterministic results that validate the standard Legendre polynomial representation with a P3 expansion.