ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tuomas Viitanen, Jaakko Leppänen
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 209-223
Technical Paper | doi.org/10.13182/NSE14-46
Articles are hosted by Taylor and Francis Online.
This paper discusses the generation of temperature majorant cross sections, the type of cross sections required by two separate techniques related to Monte Carlo neutron tracking, namely, the Doppler-broadening rejection correction (DBRC) and target motion sampling (TMS) temperature treatment methods. In the generation of these cross sections, the theoretically infinite range of thermal motion must be artificially limited by applying some sort of a cutoff condition, which affects both the accuracy and the performance of the calculations. In this paper, a revised approach for limiting thermal motion is first introduced, and then, optimal cutoff conditions are determined for both the traditional majorant, commonly used in DBRC implementations and old implementations of the TMS method, and the revised majorant. Using the revised type of temperature majorant cross sections increases the performance of the TMS method slightly, but no practical difference is observed with the DBRC method. It is also discovered that in ordinary reactor physical calculations, the cutoff conditions originally adopted from the SIGMA1 Doppler-broadening code can be significantly relieved without compromising the accuracy of the results. By updating the cutoff conditions for majorant generation, the CPU time requirement of Serpent 2.1.17 is reduced by 8% to 23% in TMS calculations and by 1% to 6% in problems involving DBRC.