ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tuomas Viitanen, Jaakko Leppänen
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 209-223
Technical Paper | doi.org/10.13182/NSE14-46
Articles are hosted by Taylor and Francis Online.
This paper discusses the generation of temperature majorant cross sections, the type of cross sections required by two separate techniques related to Monte Carlo neutron tracking, namely, the Doppler-broadening rejection correction (DBRC) and target motion sampling (TMS) temperature treatment methods. In the generation of these cross sections, the theoretically infinite range of thermal motion must be artificially limited by applying some sort of a cutoff condition, which affects both the accuracy and the performance of the calculations. In this paper, a revised approach for limiting thermal motion is first introduced, and then, optimal cutoff conditions are determined for both the traditional majorant, commonly used in DBRC implementations and old implementations of the TMS method, and the revised majorant. Using the revised type of temperature majorant cross sections increases the performance of the TMS method slightly, but no practical difference is observed with the DBRC method. It is also discovered that in ordinary reactor physical calculations, the cutoff conditions originally adopted from the SIGMA1 Doppler-broadening code can be significantly relieved without compromising the accuracy of the results. By updating the cutoff conditions for majorant generation, the CPU time requirement of Serpent 2.1.17 is reduced by 8% to 23% in TMS calculations and by 1% to 6% in problems involving DBRC.