ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Terrestrial Energy looks at EnergySolutions-owned sites for IMSR plants
Advanced reactor developer Terrestrial Energy and Utah-based waste management company EnergySolutions announced they have signed a memorandum of understanding to collaborate on the siting and deployment of Terrestrial Energy’s integral molten salt reactor plants at EnergySolutions-owned sites.
Gang Li
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 154-171
Technical Paper | doi.org/10.13182/NSE13-87
Articles are hosted by Taylor and Francis Online.
This investigation is to design a nonlinear pressurized water reactor (PWR) core load-following control system with self-stability for regulating the core power and axial power difference within a target band. A two-point–based nonlinear PWR core without boron and with a power rod and an axial offset rod is modeled. By proposing the gap metric of the core to qualify the core nonlinearity, the linearized multimodel single-variable core under case 1 (multivariable core under case 2) classified by two movable regions of the power rod is modeled. Linearized models of the core at seven power levels are chosen as local models of the core to substitute the nonlinear core model for each case. Based on H-infinity (H∞) control theories, the linear matrix inequalities method is adopted to design a H∞ output-feedback controller of every local model, which is a local controller of the nonlinear core of each case. In terms of the flexibility idea of control presented, the core load-following control system for each case is established. A theorem is deduced to analyze the global stability of the system of each case. Ultimately, simulation results show that the H∞ multimodel control strategy is effective for the core of each case.