ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jun Yang, Michael Scott Greenwood, Matthew De Angelis, Michael Avery, Mark Anderson, Michael Corradini, James Matos, Floyd Dunn, Earl Feldman
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 141-153
Technical Paper | doi.org/10.13182/NSE14-45
Articles are hosted by Taylor and Francis Online.
A critical heat flux (CHF) experimental study at low pressure and natural convection condition has been conducted. The test apparatus is a natural circulation loop with an upward flow channel, simulating TRIGA (Training, Research, Isotopes, General Atomics) reactors. CHF is studied in three types of geometries: a single-rod annulus, a three-rod bundle in a trefoil tube, and a four-rod bundle in a square tube. The full-scale fuel pin heater rod is electrically heated with a prototypic axial power profile, equipped with thermocouples for CHF detection. Experiments are carried out at the following conditions: inlet subcooling from 10 to 70 K, pressure from 110 to 290 kPa, and mass flux from 0 to 400 kg/m2·s. It is observed that CHF increases as the pressure or mass flux increases but does not significantly depend on the inlet subcooling within the testing range. The current CHF data are compared with a few selected CHF correlations whose application ranges are close to the testing conditions. The relevance of the CHF to the testing parameters is investigated. A modified CHF correlation compatible with TRIGA reactor conditions is proposed based on a previous correlation and current experimental data.