ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
US, Korea sign MOU for nuclear cooperation
The U.S. departments of Energy and State have signed a memorandum of understanding with the Republic of Korea’s ministries of Trade, Industry and Energy and of Foreign Affairs for the two nations to partner on nuclear exports and cooperation.
W. R. Marcum, P. Y. Byfield, S. R. Reese
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 123-140
Technical Paper | doi.org/10.13182/NSE14-93
Articles are hosted by Taylor and Francis Online.
Oregon State University (OSU) has developed and patented a technology that produces 99Mo within a standard TRIGA reactor core and does not negatively impact safety bases for the operations of such reactor designs. This new technology, referred to as the “molybdenum element,” is intended on being demonstrated within the OSU TRIGA Reactor (OSTR) with figures of merit including 99Mo yield and operation. A comprehensive design and thermal-hydraulic analysis has been conducted to characterize the safety-related traits of the molybdenum element to facilitate a license amendment through the U.S. Nuclear Regulatory Commission to insert such an experiment in the OSTR. This study details the thermal-hydraulic characteristics of the molybdenum element exhibited within the OSTR under the three sets of conditions necessary to demonstrate the element's safety. The study leverages the lumped-parameter code RELAP5-3D Version 2.4.2 for conduct of the primary body of this work. The first condition analyzes the molybdenum element's response under steady-state, full-power operation; the second condition assumes that the inner region of the annular molybdenum element is blocked while remaining at full power; and the last condition considers several loss-of-coolant-accident scenarios. Key thermal-hydraulic parameters that may impact the safety of the OSTR are identified, presented, and discussed herein. The result of this study provides objective evidence through use of RELAP5-3D that the molybdenum element remains in a safe state during the steady and abnormal conditions considered.