ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hyunsuk Lee, Sooyoung Choi, Deokjung Lee
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 69-85
Technical Paper | doi.org/10.13182/NSE13-102
Articles are hosted by Taylor and Francis Online.
This paper proposes a new hybrid method combining the Monte Carlo (MC) method and the Method of Characteristics (MOC). The hybrid method employs MC and MOC together to solve a neutron transport problem. The two different methods are applied to different neutron energy ranges. The MC method is used to obtain accurate solutions in the resonance energy range, and the MOC is used for high and low neutron energy ranges to achieve high performance of the new method. The two methods are consistently coupled through scattering and fission source terms during the power iterations and group sweepings. Numerical tests with a model problem confirm that the hybrid method can produce a more accurate solution than a conventional MOC by a factor of 10 and much higher computational efficiency than a conventional MC method by a factor of 90.